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Abstract. The two-dimensional Ising films L × ∞ with bulk H and surface H1 fields of opposite sign
are studied above and close to bulk criticality by the density matrix renormalization group method. This
technique, applied recently to d = 2 Ising films, allows for very accurate results for the adsorption Γ as a
function of the reduced deviation from the critical temperature τ . For strong H1 three distinct classes of
shapes of Γ (τ ), determined by the value of the parameter τH ∼ (|H|L)1/(∆−ν), where L is the width of
the film, are found in agreement with earlier predictions [A. Macio lek, A. Ciach, R. Evans, J. Chem. Phys.
108, 9765 (1998)]. For strong and for weak bulk fields Γ (τ ) is a monotonic function, increasing for strong
H and decreasing for weak H, in agreement with scaling analysis and earlier mean-field results. For H
between these extreme cases Γ (τ ) assumes a maximum for τ ∼ τH and for τ < τH a depletion occurs, as in
recent experiments for critical adsorption in porous materials. For a limited range of H a qualitatively new
behavior of Γ (τ ) is found. In addition to a maximum, a minimum of Γ (τ ) for τ ∼ L−1/ν < τH appears,
which in the mean-field analysis was absent.

PACS. 05.50+q Lattice theory and statistics; Ising problems – 05.70.Jk Critical point phenomena

1 Introduction

The statistical physics of fluids confined in narrow pores
or capillaries is a subject that currently attracts much re-
search effort [1]. Interest in this area stems from the need
to understand the rich variety of phenomena observed ex-
perimentally for fluids adsorbed in real porous solids as
Vycor or silica gels and the “fundamental” issues of how
finite-size and substrate-fluid forces affect bulk properties.
Separating “single pore” effects from those associated with
the complex network of interconnected pores characteris-
tic of a real porous solid is a major challenge for theory and
experiment. In this work we focus on a problem of current
interest that concerns a phenomenon of critical adsorption
in porous media and is inspired by recent experiments [2].

The phenomenon of critical adsorption occurs when a
simple fluid, binary liquid mixture, ferromagnet, or an-
other system in a single-phase region is brought to its
bulk critical point in the presence of an attracting exter-
nal wall or another distinct physical interface. For exam-
ple, as the critical temperature Tc is approached along
a critical isochore the amount of adsorbed fluid, or the
relative adsorption in the case of binary liquid mixtures,
or the excess magnetisation for (Ising) magnets diverges
as τ ≡ (T − Tc)/Tc → 0. Theory [3–5] attributes these
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divergences to a substrate-system interaction causing a
perturbation of the relevant Order Parameter (OP) over
a distance from the wall of the order of ξb, the bulk cor-
relation length. Thus, for situations away from bulk crit-
icality the OP profile differs from its bulk value (fixed by
the properties of the reservoir far from the substrate) over
microscopic distances and the amount adsorbed is finite.
On the other hand, close to criticality, where ξb ∼| τ |−ν

(ν is the critical exponent), the influence of the wall ex-
tends to macroscopic distances and the amount adsorbed
can be a diverging quantity. Near criticality, ξb is the con-
trolling length scale and one expects that as T → Tc the
OP profile should be described in terms of universal scal-
ing function as proposed by Fisher and de Gennes [3]

m(r) = τβMsi

( r
ξb
, y
)
, (1)

where the subscript “si ” stresses that we are dealing with
a semi-infinite system. The adsorption (coverage) Γ has
in the semi-infinite system the form

Γ ≡

∫ ∞
0

m(r)dr = τβξbGsi(y). (2)

r is the distance measured normal to the substrate,
located at r = 0. For the magnetic case m(r) is the
magnetisation profile, β is the critical exponent describing
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the vanishing of the bulk (OP) magnetisation and Γ is the
(excess) magnetisation. These formulae refer to τ > 0 and
the situation where the bulk magnetic field H = 0. Msi

and Gsi are universal scaling functions and y = τ−νH
ν/∆1

1
is the scaling variable describing coupling to the surface
magnetic field H1. y ∼ ξb/l1 is the ratio of the two length

scales ξb and l1 ∝ H
−ν/∆1

1 , where ∆1 is the surface gap
exponent [6].

Within the general context of surface critical phenom-
ena [6] critical adsorption corresponds to the H1 6= 0 fixed
point so that as τ → 0, y → ∞. In this limit Gsi(y)
is asymptoticaly constant and, from (2), Γ takes on the
asymptotic form (for τ → 0 and for any non-zero value of
H1)

Γ ∼ τβ−ν . (3)

Recent experiments by Thommes et al. [2] designed to
test above prediction for SF6 on a colloidal graphite ad-
sorbent found that as T was lowered on a near critical iso-
chore Γ first increased (as predicted) but then decreased
very rapidly, taking on negative values for T − Tc < 1 K.
Microgravity experiments by the same group confirmed
these results and lead them to study adsorption of SF6 in
a mesoporous glass CPG-10, which comprises a rigid in-
terconnected system of mesoporous with a nominal pore
diameter of 31 nm. Γ showed a very similar temperature
dependence and they attributed this critical depletion to
finite-size effects [2] but the precise origin of such a dra-
matic variation of Γ was unclear.

Only very recently in the work by Macio lek et al. [7] it
was argued that critical depletion is a general phenomenon
associated with a fluid in a single idealized pore and re-
sulting from a competition between positive adsorption
(the walls or surface fields favor the dense liquid phase)
and negative adsorption associated with the bulk-like field
which favors the dilute gas phase. Such a bulk-like field is
present when the bulk reservoir is not exactly at the crit-
ical density, because then the chemical potential for the
pore becomes uncritical. In the vicinity of the bulk crit-
ical point even very slight difference between the actual
and the critical values of the chemical potential may lead
to the pronounced differences in the density due to the
large compressibility κT ∼ τ−γ . For the subcritical values
of the chemical potential in the pore there is a competi-
tion between the bulk and the surface critical behavior.
Sufficiently close to Tc the bulk effects may take over, be-
cause γ > |β − ν| and the critical depletion would result.
This explanation proposed first in reference [7] was sup-
ported by the critical scaling analysis and the mean-field
(MF) calculation for a lattice gas confined between two
identical planar walls.

MF results, however, are not sufficient to capture the
true criticality of the system. The MF approximation ig-
nores the effects of fluctuations which may be particularly
pronounced when the bulk correlation length is compa-
rable to the pore size. In the presence of fluctuations the
behavior of the OP profiles and the adsorption Γ as a func-
tion of temperature may be qualitatively different from the

MF predictions. On the other hand, scaling analysis, al-
though generally valid, does not provide the actual forms
of the scaling functions.

In this paper we study the effects of fluctuations in the
same simplest model of confined fluid as in reference [7],
namely the lattice gas (Ising model) subject to identical
surface fields located at the two walls. Our first goal is to
test whether the predictions of reference [7] persist when
the critical fluctuations are taken into account. Secondly,
we investigate whether in the case of a critical film the
fluctuations may lead to a qualitatively different behavior
of the OP profiles and the adsorption, especially in the
temperature interval corresponding to ξb ∼ L, where the
effects of fluctuations should be particularly pronounced.
Such relevant qualitative differences in physical quantities
related to effects of fluctuations were discovered recently
in reference [8]. It was found that contrary to the MF
predictions in the critical region the OP profiles near the
weakly adsorbing wall were nonmonotonic functions of the
distance from the wall.

We study the lower critical dimension d = 2. The case
of two-dimensional systems is the ultimate test of the va-
lidity of the MF predictions, since we know that in this
low dimension, fluctuations are particularly strong. The
effects of fluctuations on the adsorption Γ in the two-
dimensional Ising model of a pore was studied only in
case of zero bulk field H by exact transfer-matrix calcu-
lations [7]. However, for the interesting case of compet-
ing bulk and surface fields, the exact solution of the two-
dimensional Ising film does not exist and to go beyond the
mean-field approach one has to employ the approximate
methods. We propose here the density matrix renormal-
ization group (DMRG) method, introduced first by White
[9] for quantum systems. The method is very accurate and
has been successfully applied for two-dimensional classi-
cal systems by Nishino [10] for the construction of effec-
tive transfer matrices of large systems. In principle the
DMRG method is equivalent for d = 2 classical systems
to the transfer matrix method. The role of the renormal-
ization is only to construct a transfer matrix of a large
strip by series of iterations. At low temperatures in order
to renormalize the transfer matrix we have to use its two
eigenvectors related to both phases (substantially differ-
ent here). By this we overcome the problem of metasta-
bility [11]. The method works equally well for vanishing
as well as nonvanishing bulk fields. Recently this method
was applied for studying the wetting phenomena in Ising
films [12].

The paper is organized as follows. In Section 2 the
recent theory for the critical adsorption phenomenon for
simple fluids confined in a single, idealized slit-like pore is
summarized. The special attention is paid to the case of
competing bulk and surface fields. In Section 3 the DMRG
method is briefly reviewed and the results of the calcula-
tions for two-dimensional Ising films are presented. Sum-
mary and conclusions end the paper.
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2 Background

We consider a confined system belonging to the Ising uni-
versality class, that is: a simple fluid, a binary mixture
or a magnet, close to the bulk criticality. We will use the
magnetic language, but our considerations apply to the
simple fluid or to the binary mixture as well, with the
usual correspondence between magnetization and a differ-
ence between the density or concentration and their criti-
cal values respectively, and between the magnetic field and
the deviations of chemical potential or chemical potential
difference and their values at critical density or concen-
tration, respectively [7].

We concentrate on supercritical phenomena, hence we
assume for the reduced temperature τ ≡ (T − Tc)/Tc and
for the dimensionless field H, measured in units of the
coupling constant, the following conditions:

0 < τ � 1 (4)

|H| � 1. (5)

In terms of the bulk correlation length ξb the proximity
to the critical point means that ξb � a where a is a mi-
croscopic distance (size of molecules). Typically, the fluid
interacts with the confining walls. We thus assume that
there is a surface field H1 associated with the walls and
that this field is short-ranged. Finally, we assume that
the considered system is confined between two parallel
walls (slit geometry) separated by a mesoscopic distance
L. Such conditions correspond, for example, to a super-
critical fluid confined in a single pore of a typical porous
material, for example vulcan glass.

For a slit the order-parameter (OP) profile m(r) and
the adsorption (coverage), defined as in equation (2) but
with the upper limit of integration equal toL, should have,
according to the finite-size scaling, the following forms (up
to the nonuniversal metric factors):

m(r) = τβM
( r
L

;x, y, z
)

(6)

and

Γ = τβLG(x, y, z), (7)

where M and G are scaling functions,

x = |H|ν/∆τ−ν , (8)

y = H
ν/∆1

1 τ−ν (9)

and

z = Lτν . (10)

All the exponents have their standard meaning [6]. Usu-
ally, instead of x and y one considers x∆/ν and y∆1/ν as
scaling variables. With our choice, x and y are propor-
tional to the ratio between the bulk correlation length

and the lengths related to the bulk and the surface fields
respectively.

In the sequel we will concentrate on the case of strongly
adsorbing walls. Strictly speaking, we will assume y � 1,

or equivalently τ � H
1/∆1

1 , where H1 is, as H, measured
in units of the coupling constant. For fixed H1 this con-
dition is always satisfied sufficiently close to criticality. In
the case of semi-infinite system the strong-field limit is
therefore referred to as the normal [13] transition. In this
case, for sufficiently large y, the scaling functions M and
G assume their asymptotic forms for y →∞,M0( r

L
;x, z)

and G0(x, z) respectively.
For a given slit of a size L and a given sample specified

by H, the OP profile and the Γ depend on τ through the
dependence of the scaling functions on x and z. This de-
pendence, in general, can be determined by exact or ap-
proximate calculations for various model systems. Some
features of m(r) and Γ (τ), however, can be deduced on
general grounds. First of all, for a given slit of a size L,
we can distinguish two asymptotic temperature intervals
within the critical region: τ � L−1/ν and L−1/ν � τ � 1,
corresponding to ξb � L and ξb � L. In the first case
the system behaves as at the critical isochore. For tem-
peratures so close to criticality, increasing the correlation
length, already much larger than the size of the system
has little effect on the OP and the adsorption is lim-
ited rather by the size of the system. In the second case,
ξb � L, the inner part of the slit is not affected by the
walls and behaves as the bulk, whereas near the surfaces
the semi-infinite like behaviour occurs. In the crossover
region ξb ∼ L/2 the fluctuations play particularly impor-
tant role, unless H is strong enough to suppress them. A
reduced temperature τ0, corresponding to

ξb(τ0) = L/2 (11)

is a “mirror image” of the critical temperature for the
capillary condensation [1], in the sense that the extent of
correlations reaches the size of the system in both cases,
above and below Tc.

Let us analyze the different temperature intervals for
a given slit in more detail

• τ � τ0 ∼ L−1/ν

As already noted, if the correlation length ξb is much
larger than the size of the pore, then the adsorption
is rather determined by the size of the pore, and only
very weakly depends on τ , i.e. for τ � τ0 ∼ L−1/ν a
saturation of the adsorption is expected. Therefore the
behavior at the critical point should approximately
hold. According to scaling [13], the OP profile has at
criticality the shape:

m(r) = r−β/νMc(r/L;xz) (12)

where Mc is a scaling function, and xz = Hν/∆L is a
scaling variable appropriate at T = Tc. The adsorption
has thus the form

Γ ∼ L(ν−β)/νGc(xz), (13)
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where

Gc(xz) =

∫ 1

0

dζζ−β/νMc(ζ, xz). (14)

In the case of H = 0, i.e. x = 0, the behavior of Γ
is given by (13) with Gc(xz) replaced by a constant,
Gc(0), and Γ ∼ L(ν−β)/ν .
For H 6= 0, at the critical isotherm we have m ∼ H1/δ

in the bulk. For sufficiently strong H (compared to
H1) similar dependence of Γ on H is expected, hence
Γ should behave as

Γ ∼ sgn(H)|H|1/δL. (15)

Consistency between the above dependence on H and
the scaling prediction (13) gives the behavior of Gc(xz)
for xz →∞ as:

Gc ∼ (xz)β/ν . (16)

In the above we make use of the scaling relation [6]
∆/δ = β.
For x = 0 (H = 0) the relation (13) was confirmed in
exact calculations in the Ising model [7] and in refer-
ence [14] in case of Widom approximation with rational
values of critical indices. For x 6= 0 (H 6= 0), Γ was cal-
culated only within the MF approximation, and (15)
was confirmed for strong H with δ = 3, which is the
MF value of δ [7].
The value at which Γ (τ) saturates for τ � L−1/ν

strongly depends on H and H1. It ranges from a pos-
itive value for H = 0, of order of Γ ∼ L(ν−β)/νGc(0),
then, for H < 0 decreases for increasing |H|, becomes
negative, and for strong H < 0 behaves according to
(15).

• L−1/ν ∼ τ0 � τ � 1
When the size of the pore is mesoscopic, the inner part
of it behaves as the bulk fluid near criticality, as long as
the bulk correlation length, although much larger than
the size of molecules, is much smaller than the width
of the pore. In this case the walls have very little effect
on the properties of the fluid in the central part of the
slit. The magnetization in this “core part” then only
very weakly depends on the position, and behaves as

mb = Hχ = AHτ−γ L−1/ν � τ � 1 (17)

where A = O(1) is a constant amplitude and χ is the
susceptibility.
Near the walls, on the other hand, the fluid behaves as
in the semi-infinite, nearly critical system subjected to
the surface field H1, if the other wall is much further
away than the extent of correlations. When the near-
surface region is not disturbed by the other wall, the
OP profile should have almost the same form as in the
semi-infinite case at normal transition, namely

m(r) = τβMsi

(
r

ξb
;x, z

)
, (18)

whereMsi(
r
ξb

;x, z) decays exponentially for

(
r

ξb

)
�1.

From the above considerations we can approximate the
value of adsorption by

Γ ∼ 2τβξbGsi +AHτ−γL, (19)

where Gsi =
∫∞

0 dζM0(ζ) = O(1) and the contribution
from the two walls is taken into account.
A particularly interesting situation occurs when the
surface and the bulk fields favour different phases,
say H1 > 0 and H < 0, and the bulk and the sur-
face contributions to Γ compete. As ξb ∼ τ−ν and
γ > ν − β, for not too weak H, the bulk term ex-
ceeds the surface term for sufficiently small τ , and the
Fisher-de Gennes (FdeG) form is no longer valid.
In order to analyze the influence of H on the shape of
Γ (τ), we rewrite (19) with the help of the exponent
relation [6] γ = ∆− β as

Γ (τ) = τβ−ν

[
G −

(
τ

τH

)ν−∆]
, (20)

where G = O(1) and

τH = (A|H|L)1/(∆−ν) (21)

is a crucial parameter, which allows to distinguish
various kinds of systems, with qualitatively different
shapes of Γ (τ). The different ranges of τH are approx-
imately: (1) τH > 1 (strong-field limit), (2) L−1/ν ∼
τ0 < τH < 1 (crossover case) and (3) τH < τ0 ∼ L−1/ν

(weak–field limit).

1. τH > 1
In this case τ/τH � 1 in the whole critical region.
Thus, the second term in (20) dominates, since it is
a small number taken to a negative power. Hence
the adsorption is negative i.e. in fact desorption
takes place despite the adsorbing walls. For τH � 1
the adsorption assumes for L−1/ν � τ � 1 the
asymptotic form

Γ (τ) ∼ −|H|Lτ−γ . (22)

The consistency of the above form with the finite-
size scaling was verified in reference [7]. The MF
calculations for Γ also confirm (22) for strong H,
with γ = 1 in MF. However, L must be sufficiently
large so that the condition τ � L−1/ν can be satis-
fied within the region of validity of the asymptotic
behavior χ ∼ τ−γ , which occurs only asymptoti-
cally, for sufficiently small τ .

2. L−1/ν ∼ τ0 < τH < 1
For a given slit this condition corresponds to
weaker H, i.e. to more critical bulk system. When
τ � L−1/ν is increased, the second term in (20)
dominates as long as τ < τH , as argued previously,
and Γ (τ) increases. For τ ∼ τH the maximum
of Γ (τ) is expected. Finally for τ � τH the con-
stant term in (20) dominates over the second term,
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in which a large number is taken to a negative
power. For such temperatures the usual Fisher-de
Gennes form of adsorption, Γ ∼ τβ−ν is expected.

3. τH < τ0 ∼ L−1/ν

In this case the first term in (20) dominates in
the whole region of validity of this approximation,
hence in this region the adsorption has the FdeG
form.

We can summarize the conclusions of the above anal-
ysis and the results of the MF (in case of H < 0) and
exact (in case of H = 0) calculations [7]. The behavior
of the adsorption Γ (τ) is qualitatively different in the
three cases determined for a given pore by the strength
of H for H < 0.

– Strong bulk field
In the case of strong H < 0 the adsorption is a
monotonically increasing function of τ , which has
a negative value at τ = 0, very weakly depends
on τ for τ < L−1/ν , and increases for growing τ ,
according to the power law (22) if τH and L are
sufficiently large.

– Intermediate bulk field
The adsorption is weakly negative and constant for
τ � L−1/ν , next it increases and reaches a maxi-
mum for τ ∼ τH , and for τ > τH decreases, assum-
ing the FdeG form.

– Weak and vanishing bulk field
The positive and almost constant adsorption for
τ � L−1/ν monotonically decreases for larger re-
duced temperatures, and for sufficiently large τ Γ
follows the FdeG law.

In the crossover region between temperatures τ �
L−1/ν and τ � L−1/ν , i.e. in the region where the
extent of correlations is comparable to the size of the
system, the fluctuations play a major role. Their ef-
fect on Γ (τ) has not been studied yet. From general
grounds we can only conclude that strongH suppresses
the fluctuations and the qualitative behavior of Γ (τ)
should be correctly described by the MF calculations
(the quantitative form is of course different due to
different values of critical exponents). For weak H,
however, the system should be particularly susceptible
to fluctuations, and the form of Γ (τ) can sensitively
depend on H, particularly in the temperature range
τ ∼ L−1/ν . In this temperature interval the form of
Γ (τ) can be qualitatively different in presence of fluc-
tuations from the MF predictions.

3 Results for two-dimensional Ising films

In this section we present the results of DMRG calcula-
tions for the two-dimensional (d = 2) Ising film defined
on the square lattice L ×M,M → ∞. The lattice con-
sists of L columns at spacing a ≡ 1, so that the width of
the strip is La = L. At each site, labeled i, j, ..., there is
an Ising spin variable taking the value σi = ±1. We as-
sume only nearest-neighbor interactions of strength J and

ξ ξ

ξ

js s

ss

A B

A

A

A B

B

Bξi i
i i

j j

j

Fig. 1. Schematic view of a transfer matrix element of a strip
of width L generated by the DMRG. ξ and s label block and
spin variables respectively, with ξ = 1, 2 . . . m and s = ±1. The
total dimension of the matrix is 4m2×4m2. The arrow denotes
the transfer direction.

a Hamiltonian of the form:

H = −J
[∑
〈i,j〉

σiσj −H
∑
i

σi −H1

(1)∑
i

σi −HL

(L)∑
i

σi

]
,

(23)

where the first sum runs over all nearest-neighbour pairs
of sites while the last two sums run, respectively over the
first and the L-th column. H is the bulk magnetic field
and H1 and HL are the surface fields corresponding to
a direct, short range (“contact”) interaction between the
walls and the spins in the film. H,H1 and HL are all di-
mensionless fields, measured in units of J . We assume that
both surface fields lead to preferential adsorption of the
positively magnetized bulk phase on the inner surfaces of
the pore (i.e. H1 = HL > 0). The pore has finite width
La but we will take the limit M →∞.

The analysis of this model has been based on the den-
sity matrix renormalization group approach originally in-
troduced by White to study the ground state properties of
quantum spin chains [9]. Exploiting the relation between
a d-dimensional quantum system and a d+1-classical sys-
tem, Nishino extended the DMRG to study equilibrium
properties of two-dimensional classical lattices [10]. Al-
though the name DMRG is widely used, the method has
only some analogies with the traditional renormalization
technique [15].

In the DMRG calculation for classical systems one
starts from a transfer matrix of a small system that can be
solved exactly. With the help of the information about the
thermodynamics of the system [10], one generates the ef-
fective transfer matrix of a larger system. The strip width
grows at each DMRG iteration and the spin space is trun-
cated to keep the dimensionality of the effective transfer
matrix controlled.

Figure 1 shows schematically an element of the effec-
tive transfer matrix generated by the DMRG algorithm.
The matrix consists of block and spin variables. A block
describes approximately a collection of spins. The block
states are labeled by a variable ξ which can take m� 2L

possible values. Keeping m larger one obtains more accu-
rate numerical results. In the present case we found that
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(T-Tc)/Tc
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Γ

Fig. 2. Adsorption Γ as a function of the deviation from the
bulk critical temperature τ calculated by the DMRG method
for the d = 2 Ising film of width L = 96 and surface fields
H1 = HL = 0.8 and various bulk fields: (triangles left) H =
−0.002; (squares) H = −0.0022; (diamonds) H = −0.0024;
(triangles up) H = −0.0025; (circles) H = −0.0026; (stars)
H = −0.0028; (triangles) H = −0.004; (crosses) H = −0.006.

for the strip L = 96 a value of states kept m = 40 is
sufficient to guarantee a very high accuracy of our mag-
netization profiles [12]. In our calculation we have used
the finite-system version of DMRG algorithm designed to
accurately study finite size systems [16]. For more details
see references [17–19].

The leading eigenvalue λL of the effective transfer ma-
trix TL

TL|vL〉 = λL|vL〉, (24)

gives the free energy per spin as

fL = −
1

L
lnλL. (25)

If the dominant eigenvector |vL〉 is normalized, the squares
of its elements v2

L(i) are equal to the probabilities of find-
ing a row in a state i. That provides us the average quan-
tities as, e.g. the magnetization at l site:

〈ml〉 =
4m2∑
i=1

v2
L(i)sl(i), (26)

where sl(i) = ±1 is the value of spin in the i− th state.
Calculations are done for the film of width L = 96 with

fixed surface fields H1 = HL = 0.8 and various magnetic
bulk fields H. For the d = 2 Ising model there exist an-
alytical expressions for both ξb and χ, so the amplitudes
of ξb and χ defined by ξb = Abτ−ν and χ = Aτ−γ (see
Eq. (17)) are known: Ab ≈ 0.56, A ≈ 0.963 [20]. The value
of critical exponents used in our derivations are the fol-
lowing ν = 1, ∆ = 15/8 and γ = 7/4. Hence the crossover
temperature, defined by the equation (11), for our system
is τ0 = 0.011, and the dependence of τH on H is given by

10
-6
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-3
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-2
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-1

10
0

(T-Tc)/Tc

0.1

1.0

10.0

100.0

Γ

Fig. 3. Log-log plot of the adsorption Γ for the same sys-
tem as in Figure 2 but for weak and intermediate bulk fields:
(triangles left) H = −10−7; (triangles up) H = −10−3;
(circles) H = −0.002; (pluses) H = −0.0022 ; (triangles)
H = −0.0024; (crosses) H = −0.0025 exposing the behavior
near Tc and in the crossover region for τ around τ0 ∼ 0.001.
For τ = (T − Tc)/Tc ≤ 10−4 Γ is almost constant.

τH = (94.33H)8/7. Note the important difference between
τ0 in this case and in the MF approach with the width
of the slit equal to 400 [7]. In the latter case τ0 ∼ 10−5.
Although L ∼ 102 in both cases, τ0 is three orders of mag-
nitude larger in the case of the d = 2 Ising slit. Therefore
the region 1 � ξb � L, i.e. L−1/ν � τ � 1 is in our
case 10−2 � τ � 1, i.e. it is significantly narrower than
in the MF approach considered in reference [7]. From the
classification summarized in the Section 2 and from the
explicit form of τH given above, we find that the strong
and the weak field regions correspond to |H| > 10−2 and
to |H| < 2× 10−4 respectively.

To meet the scaling analysis and MF predictions we
take H ranging from very small values H = −10−7 up
to H = −0.8. The results of these calculations for the
adsorption Γ ≡

∑L
l=1ml as a function of the reduced de-

viation from the critical temperature τ are presented in
Figures 2, 3 and 4. Various curves in these figures corre-
spond to various bulk magnetic fields H between −10−7

and −0.1. The general feature shared by all the plots of
Γ (τ) is the saturation which starts for τ ∼ 10−3. This
perfectly agrees with the expectation of saturation taking
place for τ � τ0 ≈ 10−2. Our results thus agree with the
general predictions and the earlier results obtained within
the MF approximation [7]. For larger τ the shape of Γ (τ)
strongly depends on H, as expected.

For the weakest bulk fields H = −10−7,−10−3 the
behavior of Γ (τ) is similar to the case of vanishing bulk
field [7] (see Fig. 3). Γ is positive for all values of τ . It
first increases monotonically as T decreases and in the
temperature range corresponding to τ between 0.2 and
0.8, logΓ versus log τ is approximately linear with a slope
equal to −7/8, which agrees with the Fisher-de Gennes
result Γ ∼ τβ−ν , since β = 1/8 and ν = 1 for the
d = 2 Ising model. On reducing T further the adsorption
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Fig. 4. Semilog plot of the adsorption Γ (τ ) for the same sys-
tem as in Figure 2 for (a) “intermediate” bulk field (crosses)
H = −0.003 and (b) “strong” bulk fields (triangles) H =
−0.004; (pluses) H = −0.006; (triangles up) H = −0.01; (tri-
angles left) H = −0.1. As for the “weak” and “intermediate”
bulk fields of Figure 3 the adsorption is almost constant for
τ = (T − Tc)/Tc ≤ 10−4 , however unlike in Figure 3 it takes
on a negative value.

continues to increase but the curve deviates from the
Fisher-de Gennes power law behavior. There is also an
inflextion point on the Γ curve which for H = −10−7 is
located at approximately the same T/Tc as for H = 0,
i.e. T/Tc ∼ 1.01286. For H = −103 it is shifted towards
τ = 0. Eventually Γ saturates for τ < 10−3. In the MF
calculations of reference [7] for H1 = 0.1 and L = 400
such a small bulk field as H = −10−7 was strong enough
to cause the critical depletion. However, contrary to the
d = 2 Ising film, τH > τ0 in that case, i.e. |H| = 10−7 was
not in the weak field region, as in our case, but rather in
the intermediate field range.

For the bulk fields equal to and stronger than−4×10−3

the adsorption is negative for all τ < 1 (see Fig. 4).
Γ decreases monotonically on approaching Tc and for
τ < 10−3 it saturates. This is the behavior typical for the
“strong field” regime (we estimated that the strong field
region corresponds to |H| > 10−2). However, the predicted
power law asymptotic form of Γ (22) is not found in the
expected range of L−1/ν ∼ 10−2 � τ � 1. The width
of the film (L = 96) might not be large enough to assure
that τ simultaneously satisfies the above condition and lies
within the region of validity of the approximation (20).

In the case of intermediate bulk fields, for the fields
between −10−3 and −4× 10−3 (τH between 0.07 and 0.3)
a very peculiar behavior of the adsorption as a function of
temperature can be seen in Figures 2, 3. This is qualita-
tively new behavior, not found in the MF approximation
of reference [7]. It is characterized by dramatic changes of
the shape of the function Γ (τ) which take place in very
narrow range of values of H. For τ > τH Γ (τ) assumes
the FdeG form but then ceases to be a monotonically
decreasing function – on approaching Tc the maximum
and then the minimum gradually develop as the value of
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Fig. 5. Log-log plot of the function Γ (τ ) calculated for the
same system as in Figures 2–4 with the bulk field H = −0.0025
to show the Fisher-de Gennes power law behavior for τ � τH .
The straight line has a slope −7/8 (see text).

the bulk magnetic field is lowered (|H| increases). The lo-
cations of the maximum and the minimum change with
H. The maximum shifts slightly towards higher values of
τ . This behavior is consistent with the prediction of Sec-
tion 2 for the case of intermediate bulk fields, which says
that Γ should reach its maximum for τ ∼ τH , since τH is
an increasing function of |H|.

The minimum shifts towards smaller values of τ and
becomes deeper as |H| is increased. At the same time the
value at which Γ saturates, which for H = −0.0022 and
H = −0.0024 is greater than the value of Γ at the max-
imum, quickly decreases with growing |H|, so that the
minimum disappears for H = −0.003. For this value of
H the shape of Γ (τ) becomes similar to the MF result
for the intermediate bulk field regime, i.e. the adsorption
is negative and constant for τ � L−1/ν ≈ 0.01, next it
increases and reaches maximum for τ ∼ 10−1, which is of
the same order of magnitude as τH ≈ 0.24, and for τ > τH
decreases, assuming the FdeG form (see Fig. 5).

As expected, this new behavior occurs in the crossover
region between temperatures τ � L1/ν ≈ 0.01 and
τ � L1/ν ≈ 0.01, i.e. when the bulk correlation length
is comparable to the system size and can be explained
as the effect of the strong fluctuations. The bulk field
H = −0.003 is strong enough to suppress these fluctu-
ations and the behavior of Γ (τ) is qualitatively correctly
described by the MF calculations. For weaker H, however,
the depletion tendency of Γ is changed by the fluctuations
and the minimum results for τ ≈ 0.01 or smaller, corre-
sponding to ξb ∼ L/2. For higher values of |H|, ξb ∼ L/2 is
achieved for lower value of τ since the bulk field suppresses
fluctuations, and hence the minimum of Γ (τ) should shift
towards Tc which is observed.

In Figure 6 the value of the magnetization at the mid-
dle of the pore is sketched as a function of temperature
for H = −0.0025 in the vicinity of the minimum of
Γ (τ). The log scale for temperature is used to expose
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Fig. 6. The value of the magnetization in the middle (l =
48) of the d = 2 Ising film of width L = 96, surface fields
H1 = HL = 0.8 and bulk field H = −0.0025 calculated by the
DMRG method and plotted on the logarithmic deviation from
the critical temperature τ scale.
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Fig. 7. Plot of Γ/L as a function of the bulk field H calculated
by the DMRG method for the d = 2 Ising film of width L =
96 and surface fields H1 = HL = 0.8 for the bulk critical
temperature Tc. In the insert the vicinity of the origin of the
plot is blown up.

the behavior near Tc. Due to the presence of the neg-
ative bulk magnetic field mmid decreases as Tc is ap-
proached (mb ∼ |H|τ−γ) but around τ ∼ τ0, for which
Aξbτ

−ν = 112 > L = 96, the critical fluctuations take
over. The walls start to “feel” each other strongly, their
influence extends over the whole pore and as a result
the magnetization inside the pore has a minimum for
τ ∼ 0.005. For still lower value of τ mmid saturates.

Figures 7 and 8 show the behavior of the adsorption
Γ at the critical temperature. Figure 7 plots Γ/L against
H for H between −1 and +1. The shape of this function
has a familiar “step-like” form which, due to the presence
of positive surface fields is shifted towards negative val-
ues of H (see insert), i.e. Γ takes on the zero value for

0.010 0.100 1.000
|H|

0.10

1.00

|Γ
|/L

Fig. 8. The same result as in Figure 7 but now plotted on the
log-log scale for the absolute value of Γ/L as a function of the
absolute value of the bulk magnetic field H. The straight line
has slope equal to 1/15 (see text).
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Fig. 9. Selection of the critical magnetization profiles cal-
culated by the DMRG method for the d = 2 Ising film
of width L = 96 and surface fields H1/J = HL/J = 0.8
for various bulk fields: the most upper profile corresponds
to H = −10−7, then subsequently to the bottom profile:
H = −0.0014,−0.0018,−0.0022, −0.0025, −0.0042, −0.01,
−0.1, −1.

H ∼ −0.00255. Figure 8 shows the log-log plot of |Γ |/L
versus |H|. The straight line has a slope 1/15 so that the
predicted behavior Γ ∼ |H|1/δ (Eq. (15)) with δ = 15
in the d = 2 Ising model is obeyed in the range of |H|
between 0.3 and 0.9.

The sequence of the critical magnetization profiles for
various bulk magnetic fields ranging between −10−7 and
−1 is shown in Figure 9. The critical profiles are flat inside
the pore only for such extremely weak bulk fields as−10−7

or much stronger, i.e. H ≤ −0.01. In the intermediate
range of H the bulk and surface fields compete and the
profiles are much more curved.
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4 Summary

We studied d = 2 Ising strips (L × ∞) with competing
bulk and surface fields near the bulk criticality using the
DMRG method [12], which allows for obtaining very accu-
rate results [6]. Physically our system describes for exam-
ple a single idealized pore with attractive walls, containing
a nearly critical fluid in contact with a bulk reservoir. In
this example of our system the bulk-like field is related
to the difference between the chemical potential and its
critical value.

Our results in general confirm the recent theory of the
critical adsorption in a confined system in the case of com-
peting bulk and surface fields [7]. We have shown that the
behavior of the adsorption Γ as a function of the reduced
temperature τ strongly depends on the strength of the
bulk field H for τ > L−1/ν , whereas for τ � L−1/ν Γ
saturates at positive or negative value determined by H
and H1.

We verified that three distinct field ranges occur, with
qualitatively different shapes of Γ (τ). The different field
intervals are, as previously found, determined by the value
of the parameter τH = (A|H|L)1/(∆−ν) (A is the ampli-
tude related to susceptibility) and we confirm that the
strong-field region is approximately given by τH > 1,
whereas the weak field region by τH < τ0 ∼ L−1/ν . Thus
the strong- and the weak-field intervals are larger then the
approximate estimation. The conditions for the strong and
the weak field intervals are derived on the basis of an ap-
proximate formula, thus rather the order of magnitude,
not the actual value of the field can be predicted. The nu-
merical values of H obtained in the calculations slightly
differ from the estimated values (the strong field region
corresponds to −4 × 10−3 not to −10−2 and the weak
field region to 10−3 not to 2 × 10−4). In both these re-
gions our results qualitatively agree with the earlier MF
results.

In the intermediate field range the form of Γ (τ) agrees
with the MF results only in a limited range of sufficiently
strong H. For |H| between 10−3 and 3×10−3 (τH between
0.07 and 0.24) we observe qualitatively new behavior. In
addition to the maximum of Γ present in the intermediate
field region for τ ∼ τH , a minimum appears for τ ∼ τ0,
and only for smaller τ � τ0 the saturation takes place,
as expected. The peculiar behavior of Γ (τ), not observed
within the MF occurs for τ ∼ τ0, where the extent of fluc-
tuations reaches the size of the system and the competition
between the effect of adsorbing walls and susceptibility of
the core part favouring the dilute phase is particularly
strong. Sufficiently close to the critical point the adsorb-
ing effects of the walls appear to dominate, but only for
a limited range of H. We do not find simple general ar-
guments which would determine the range of H for which
the minimum of Γ (τ ∼ τ0) occurs. We should stress that
the general analysis presented in Section 2 did not concern
this temperature region.

The reduced temperature τ0 ∼ L−1/ν is very special in
a confined geometry. Not only the Γ (τ), but also the sol-
vation force assumes extremum near τ0 [21]. This special
meaning of τ0 may be related to the rounding of critical

point in a confined geometry. As we have shown, near the
critical point the adsorption is analytic function of τ at
τ = 0, it is rather a very smooth, almost constant func-
tion for τ < L−1/ν . If we consider the extent of correla-
tions and compare it with the size of the system, then the

temperature interval
(

(−τ0+1)Tc, Tc(1+τ0)
)

corresponds

to the correlation extending over the whole sample. The
lower boundary of the above interval is of the order of the
critical temperature for the capillary condensation. The
upper boundary is also special in the sense that physical
quantities attain extrema or have inflection points for τ
close to τ0.

We are indebted to E. Carlon and J. Wojtkiewicz for critical
reading of the manuscript. This work was partially supported
by the KBN grant N◦ 2P03B01810.
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19. E. Carlon, F. Iglói, Phys. Rev. B 57, 7877 (1998).

20. V. Privman, Phase Transitions and Critical Phenomena,
edited by C. Domb and J.L. Lebowitz (Academic Press,
London, 1991), Vol. 14, p.1.

21. R. Evans, J. Stecki, Phys. Rev. B 49, 8842 (1993).


